George Papamakarios
George Papamakarios
DeepMind
確認したメール アドレス: google.com - ホームページ
タイトル
引用先
引用先
Masked Autoregressive Flow for Density Estimation
G Papamakarios, T Pavlakou, I Murray
Advances in Neural Information Processing Systems, 2335-2344, 2017
4672017
Normalizing Flows for Probabilistic Modeling and Inference
G Papamakarios, E Nalisnick, DJ Rezende, S Mohamed, ...
Journal of Machine Learning Research 22 (57), 1-64, 2021
2192021
Fast ε-free inference of simulation models with Bayesian conditional density estimation
G Papamakarios, I Murray
Advances in Neural Information Processing Systems, 1028-1036, 2016
1352016
Neural spline flows
C Durkan, A Bekasov, I Murray, G Papamakarios
Advances in Neural Information Processing Systems, 7511-7522, 2019
1202019
Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows
G Papamakarios, D Sterratt, I Murray
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
892019
Temporal difference variational auto-encoder
K Gregor, G Papamakarios, F Besse, L Buesing, T Weber
arXiv preprint arXiv:1806.03107, 2018
642018
Normalizing flows on tori and spheres
DJ Rezende, G Papamakarios, S Racaniere, M Albergo, G Kanwar, ...
International Conference on Machine Learning, 8083-8092, 2020
312020
On contrastive learning for likelihood-free inference
C Durkan, I Murray, G Papamakarios
International Conference on Machine Learning, 2771-2781, 2020
202020
Cubic-Spline Flows
C Durkan, A Bekasov, I Murray, G Papamakarios
arXiv preprint arXiv:1906.02145, 2019
202019
Targeted free energy estimation via learned mappings
P Wirnsberger, AJ Ballard, G Papamakarios, S Abercrombie, S Racanière, ...
The Journal of Chemical Physics 153 (14), 144112, 2020
132020
The Lipschitz Constant of Self-Attention
H Kim, G Papamakarios, A Mnih
arXiv preprint arXiv:2006.04710, 2020
132020
Generalised scalable robust principal component analysis
G Papamakarios, Y Panagakis, S Zafeiriou
BMVA Press, 2014
132014
Neural density estimation and likelihood-free inference
G Papamakarios
arXiv preprint arXiv:1910.13233, 2019
122019
Neural belief states for partially observed domains
P Moreno, J Humplik, G Papamakarios, BA Pires, L Buesing, N Heess, ...
NeurIPS 2018 workshop on Reinforcement Learning under Partial Observability, 2018
112018
Distilling intractable generative models
G Papamakarios, I Murray
Probabilistic Integration Workshop at Neural Information Processing Systems, 2015
112015
Sequential Neural Methods for Likelihood-free Inference
C Durkan, G Papamakarios, I Murray
arXiv preprint arXiv:1811.08723, 2018
102018
Comparison of Modern Stochastic Optimization Algorithms
G Papamakarios
102014
Distilling model knowledge
G Papamakarios
arXiv preprint arXiv:1510.02437, 2015
92015
Robust low-rank tensor modelling using Tucker and CP decomposition
N Xue, G Papamakarios, M Bahri, Y Panagakis, S Zafeiriou
2017 25th European Signal Processing Conference (EUSIPCO), 1185-1189, 2017
72017
Causally Correct Partial Models for Reinforcement Learning
DJ Rezende, I Danihelka, G Papamakarios, NR Ke, R Jiang, T Weber, ...
arXiv preprint arXiv:2002.02836, 2020
52020
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20