Follow
George Papamakarios
George Papamakarios
DeepMind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Masked autoregressive flow for density estimation
G Papamakarios, T Pavlakou, I Murray
Advances in neural information processing systems 30, 2017
7932017
Normalizing Flows for Probabilistic Modeling and Inference
G Papamakarios, E Nalisnick, DJ Rezende, S Mohamed, ...
Journal of Machine Learning Research 22 (57), 1-64, 2021
6062021
Neural spline flows
C Durkan, A Bekasov, I Murray, G Papamakarios
Advances in Neural Information Processing Systems, 7511-7522, 2019
3022019
Fast ε-free inference of simulation models with Bayesian conditional density estimation
G Papamakarios, I Murray
Advances in Neural Information Processing Systems, 1028-1036, 2016
2152016
Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows
G Papamakarios, D Sterratt, I Murray
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
1732019
Temporal difference variational auto-encoder
K Gregor, G Papamakarios, F Besse, L Buesing, T Weber
arXiv preprint arXiv:1806.03107, 2018
1062018
Normalizing flows on tori and spheres
DJ Rezende, G Papamakarios, S Racaniere, M Albergo, G Kanwar, ...
International Conference on Machine Learning, 8083-8092, 2020
752020
On contrastive learning for likelihood-free inference
C Durkan, I Murray, G Papamakarios
International Conference on Machine Learning, 2771-2781, 2020
522020
Cubic-Spline Flows
C Durkan, A Bekasov, I Murray, G Papamakarios
arXiv preprint arXiv:1906.02145, 2019
442019
Targeted free energy estimation via learned mappings
P Wirnsberger, AJ Ballard, G Papamakarios, S Abercrombie, S Racanière, ...
The Journal of Chemical Physics 153 (14), 144112, 2020
392020
The lipschitz constant of self-attention
H Kim, G Papamakarios, A Mnih
International Conference on Machine Learning, 5562-5571, 2021
342021
nflows: normalizing flows in PyTorch
C Durkan, A Bekasov, I Murray, G Papamakarios
Version v0 14, 2020
26*2020
Neural density estimation and likelihood-free inference
G Papamakarios
arXiv preprint arXiv:1910.13233, 2019
242019
The DeepMind JAX Ecosystem
I Babuschkin, K Baumli, A Bell, S Bhupatiraju, J Bruce, P Buchlovsky, ...
URL http://github. com/deepmind, 2020
23*2020
Sequential Neural Methods for Likelihood-free Inference
C Durkan, G Papamakarios, I Murray
arXiv preprint arXiv:1811.08723, 2018
172018
Neural belief states for partially observed domains
P Moreno, J Humplik, G Papamakarios, BA Pires, L Buesing, N Heess, ...
NeurIPS 2018 workshop on Reinforcement Learning under Partial Observability, 2018
162018
Causally Correct Partial Models for Reinforcement Learning
DJ Rezende, I Danihelka, G Papamakarios, NR Ke, R Jiang, T Weber, ...
arXiv preprint arXiv:2002.02836, 2020
152020
Distilling model knowledge
G Papamakarios
arXiv preprint arXiv:1510.02437, 2015
132015
Generalised scalable robust principal component analysis
G Papamakarios, Y Panagakis, S Zafeiriou
BMVA Press, 2014
132014
Distilling intractable generative models
G Papamakarios, I Murray
Probabilistic Integration Workshop at Neural Information Processing Systems, 2015
102015
The system can't perform the operation now. Try again later.
Articles 1–20