フォロー
Masahiro Suzuki
Masahiro Suzuki
確認したメール アドレス: weblab.t.u-tokyo.ac.jp - ホームページ
タイトル
引用先
引用先
Joint multimodal learning with deep generative models
M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1611.01891, 2016
2682016
Generative adversarial nets from a density ratio estimation perspective
M Uehara, I Sato, M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1610.02920, 2016
1052016
A survey of multimodal deep generative models
M Suzuki, Y Matsuo
Advanced Robotics 36 (5-6), 261-278, 2022
862022
Neuro-serket: development of integrative cognitive system through the composition of deep probabilistic generative models
T Taniguchi, T Nakamura, M Suzuki, R Kuniyasu, K Hayashi, A Taniguchi, ...
New Generation Computing 38, 23-48, 2020
582020
World models and predictive coding for cognitive and developmental robotics: Frontiers and challenges
T Taniguchi, S Murata, M Suzuki, D Ognibene, P Lanillos, E Ugur, ...
Advanced Robotics 37 (13), 780-806, 2023
522023
A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots
T Taniguchi, H Yamakawa, T Nagai, K Doya, M Sakagami, M Suzuki, ...
Neural Networks 150, 293-312, 2022
332022
Neural machine translation with latent semantic of image and text
J Toyama, M Misono, M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1611.08459, 2016
242016
Transfer learning based on the observation probability of each attribute
M Suzuki, H Sato, S Oyama, M Kurihara
2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC …, 2014
202014
Uvton: Uv mapping to consider the 3d structure of a human in image-based virtual try-on network
S Kubo, Y Iwasawa, M Suzuki, Y Matsuo
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
122019
Improving bi-directional generation between different modalities with variational autoencoders
M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1801.08702, 2018
92018
Image classification by transfer learning based on the predictive ability of each attribute
M Suzuki, H Sato, S Oyama, M Kurihara
Proceedings of the International MultiConference of Engineers and Computer …, 2014
92014
Ssm meets video diffusion models: Efficient video generation with structured state spaces
Y Oshima, S Taniguchi, M Suzuki, Y Matsuo
arXiv preprint arXiv:2403.07711, 2024
72024
Interaction-based disentanglement of entities for object-centric world models
A Nakano, M Suzuki, Y Matsuo
The Eleventh International Conference on Learning Representations, 2023
62023
Monophonic sound source separation by non-negative sparse autoencoders
K Zen, M Suzuki, H Sato, S Oyama, M Kurihara
2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC …, 2014
62014
Pixyz: a Python library for developing deep generative models
M Suzuki, T Kaneko, Y Matsuo
Advanced Robotics 37 (19), 1221-1236, 2023
5*2023
トランポリン運動< ストレートジャンプ> の研究
伊藤直樹, イトウナオキ, 山崎博和, ヤマザキヒロカズ, 平井敏幸, ...
日本体育大学紀要 30 (1), 59-64, 2000
52000
b-gan: Unified framework of generative adversarial networks
M Uehara, I Sato, M Suzuki, K Nakayama, Y Matsuo
42016
異なるモダリティ間の双方向生成のための深層生成モデル
鈴木雅大, 松尾豊
情報処理学会論文誌 59 (3), 859-873, 2018
32018
Semi-supervised multimodal learning with deep generative models
M Suzuki, Y Matsuo
32018
深層生成モデルを用いたマルチモーダル学習
鈴木雅大, 松尾豊
人工知能学会全国大会論文集 第 30 回 (2016), 1A3OS27a3-1A3OS27a3, 2016
32016
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20