Predicting path failure in time-evolving graphs J Li, Z Han, H Cheng, J Su, P Wang, J Zhang, L Pan Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019 | 154 | 2019 |
Mts-mixers: Multivariate time series forecasting via factorized temporal and channel mixing Z Li, Z Rao, L Pan, Z Xu arXiv preprint arXiv:2302.04501, 2023 | 80 | 2023 |
Hyperbolic graph neural networks: A review of methods and applications M Yang, M Zhou, Z Li, J Liu, L Pan, H Xiong, I King arXiv preprint arXiv:2202.13852, 2022 | 68 | 2022 |
gcastle: A python toolbox for causal discovery K Zhang, S Zhu, M Kalander, I Ng, J Ye, Z Chen, L Pan arXiv preprint arXiv:2111.15155, 2021 | 60 | 2021 |
CellPAD: Detecting performance anomalies in cellular networks via regression analysis J Wu, PPC Lee, Q Li, L Pan, J Zhang 2018 IFIP Networking Conference (IFIP Networking) and Workshops, 1-9, 2018 | 56 | 2018 |
Ti-mae: Self-supervised masked time series autoencoders Z Li, Z Rao, L Pan, P Wang, Z Xu arXiv preprint arXiv:2301.08871, 2023 | 47 | 2023 |
Learning from noisy labels with complementary loss functions DB Wang, Y Wen, L Pan, ML Zhang Proceedings of the AAAI conference on artificial intelligence 35 (11), 10111 …, 2021 | 40 | 2021 |
A panoramic view of 3G data/control-plane traffic: Mobile device perspective X He, PPC Lee, L Pan, C He, JCS Lui NETWORKING 2012: 11th International IFIP TC 6 Networking Conference, Prague …, 2012 | 35 | 2012 |
Label-aware distribution calibration for long-tailed classification C Wang, S Gao, P Wang, C Gao, W Pei, L Pan, Z Xu IEEE Transactions on Neural Networks and Learning Systems, 2022 | 25 | 2022 |
Inducing neural collapse in deep long-tailed learning X Liu, J Zhang, T Hu, H Cao, Y Yao, L Pan International Conference on Artificial Intelligence and Statistics, 11534-11544, 2023 | 24 | 2023 |
An in-depth analysis of 3G traffic and performance Z Hu, YC Chen, L Qiu, G Xue, H Zhu, N Zhang, C He, L Pan, C He Proceedings of the 5th Workshop on All Things Cellular: Operations …, 2015 | 22 | 2015 |
κhgcn: Tree-likeness modeling via continuous and discrete curvature learning M Yang, M Zhou, L Pan, I King Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023 | 21 | 2023 |
TeleGraph: A benchmark dataset for hierarchical link prediction M Zhou, B Li, M Yang, L Pan arXiv preprint arXiv:2204.07703, 2022 | 21 | 2022 |
Spatio-temporal hybrid graph convolutional network for traffic forecasting in telecommunication networks M Kalander, M Zhou, C Zhang, H Yi, L Pan arXiv preprint arXiv:2009.09849, 2020 | 20 | 2020 |
Proactive microwave link anomaly detection in cellular data networks L Pan, J Zhang, PPC Lee, M Kalander, J Ye, P Wang Computer Networks 167, 106969, 2020 | 20 | 2020 |
Defect prediction method and apparatus WWE Chan, L Pan US Patent 10,068,176, 2018 | 18 | 2018 |
Contrastive shapelet learning for unsupervised multivariate time series representation learning Z Liang, J Zhang, C Liang, H Wang, Z Liang, L Pan arXiv preprint arXiv:2305.18888, 2023 | 13 | 2023 |
An intelligent customer care assistant system for large-scale cellular network diagnosis L Pan, J Zhang, PPC Lee, H Cheng, C He, C He, K Zhang Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge …, 2017 | 12 | 2017 |
SAND: A fault-tolerant streaming architecture for network traffic analytics Q Liu, JCS Lui, C He, L Pan, W Fan, Y Shi Journal of Systems and Software 122, 553-563, 2016 | 11 | 2016 |
Discovering representative attribute-stars via minimum description length J Liu, M Zhou, P Fournier-Viger, M Yang, L Pan, M Nouioua 2022 IEEE 38th International Conference on Data Engineering (ICDE), 68-80, 2022 | 10 | 2022 |