Peter Richtarik
Peter Richtarik
Professor, KAUST
確認したメール アドレス: kaust.edu.sa - ホームページ
タイトル引用先
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
P Richtarik, M Takáč
Mathematical Programming 144 (2), 1-38, 2014
5262014
Generalized power method for sparse principal component analysis
M Journee, Y Nesterov, P Richtárik, R Sepulchre
Journal of Machine Learning Research 11, 517-553, 2010
4482010
Parallel coordinate descent methods for big data optimization
P Richtárik, M Takáč
Mathematical Programming 156 (1), 433-484, 2016
3652016
Accelerated, parallel and proximal coordinate descent
O Fercoq, P Richtárik
SIAM Journal on Optimization 25 (4), 1997-2023, 2015
2412015
Federated learning: Strategies for improving communication efficiency
J Konečný, HB McMahan, FX Yu, P Richtárik, AT Suresh, D Bacon
NIPS Private Multi-Party Machine Learning Workshop, 2016
1782016
Semi-stochastic gradient descent methods
J Konečný, P Richtárik
Frontiers in Applied Mathematics and Statistics 3:9, 2017
167*2017
Mini-batch semi-stochastic gradient descent in the proximal setting
J Konečný, J Liu, P Richtárik, M Takáč
IEEE Journal of Selected Topics in Signal Processing 10 (2), 242-255, 2016
148*2016
Mini-batch primal and dual methods for SVMs
M Takáč, A Bijral, P Richtárik, N Srebro
Proceedings of the 30th Int. Conf. on Machine Learning, PMLR 28 (3), 1022-1030, 2013
148*2013
Distributed coordinate descent method for learning with big data
P Richtárik, M Takáč
Journal of Machine Learning Research 17 (75), 1-25, 2016
1412016
Quartz: Randomized dual coordinate ascent with arbitrary sampling
Z Qu, P Richtárik, T Zhang
Advances in Neural Information Processing Systems 28, 865-873, 2015
1092015
Coordinate descent with arbitrary sampling I: algorithms and complexity
Z Qu, P Richtárik
Optimization Methods and Software 31 (5), 829-857, 2016
952016
Even faster accelerated coordinate descent using non-uniform sampling
Z Allen-Zhu, Z Qu, P Richtarik, Y Yuan
Proceedings of The 33rd Int. Conf. on Machine Learning, PMLR 48, 1110-1119, 2016
932016
Adding vs. averaging in distributed primal-dual optimization
C Ma, V Smith, M Jaggi, MI Jordan, P Richtárik, M Takáč
Proceedings of the 32nd Int. Conf. on Machine Learning, PMLR 37, 1973-1982, 2015
932015
Randomized iterative methods for linear systems
RM Gower, P Richtárik
SIAM Journal on Matrix Analysis and Applications 36 (4), 1660-1690, 2015
842015
Federated optimization: Distributed machine learning for on-device intelligence
J Konečný, HB McMahan, D Ramage, P Richtárik
arXiv preprint arXiv:1610.02527, 2016
812016
On optimal probabilities in stochastic coordinate descent methods
P Richtárik, M Takáč
Optimization Letters 10 (6), 1233-1243, 2016
762016
Stochastic block BFGS: squeezing more curvature out of data
RM Gower, D Goldfarb, P Richtárik
Proceedings of The 33rd Int. Conf. on Machine Learning, PMLR 48, 1869-1878, 2016
652016
SDNA: stochastic dual Newton ascent for empirical risk minimization
Z Qu, P Richtárik, M Takáč, O Fercoq
Proceedings of the 33rd Int. Conf. on Machine Learning, PMLR 48, 1823-1832, 2016
572016
Stochastic dual coordinate ascent with adaptive probabilities
D Csiba, Z Qu, P Richtárik
Proceedings of the 32nd Int. Conf. on Machine Learning, PMLR 37, 674-683, 2015
562015
Coordinate descent with arbitrary sampling II: expected separable overapproximation
Z Qu, P Richtárik
Optimization Methods and Software 31 (5), 858-884, 2016
552016
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20