Scalable hyperparameter transfer learning V Perrone, R Jenatton, MW Seeger, C Archambeau Advances in Neural Information Processing Systems, 6845-6855, 2018 | 182 | 2018 |
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks J Chan, V Perrone, JP Spence, PA Jenkins, S Mathieson, YS Song Advances in Neural Information Processing Systems, 8603-8614, 2018 | 128 | 2018 |
Learning search spaces for bayesian optimization: Another view of hyperparameter transfer learning V Perrone, H Shen, M Seeger, C Archambeau, R Jenatton Advances in Neural Information Processing Systems, 2019 | 126 | 2019 |
Amazon SageMaker Autopilot: a white box AutoML solution at scale P Das, V Perrone, N Ivkin, T Bansal, Z Karnin, H Shen, I Shcherbatyi, ... Proceedings of the Fourth International Workshop on Data Management for End …, 2020 | 94 | 2020 |
Fair Bayesian Optimization V Perrone, M Donini, K Kenthapadi, C Archambeau AAAI/ACM Conference on AI, Ethics, and Society (AIES '21), 2020 | 91 | 2020 |
Poisson Random Fields for Dynamic Feature Models V Perrone, PA Jenkins, D Spano, YW Teh Journal of Machine Learning Research 18 (127), 1-45, 2017 | 67 | 2017 |
A Quantile-based Approach for Hyperparameter Transfer Learning D Salinas, H Shen, V Perrone International Conference on Machine Learning 2020, 7706--7716, 2019 | 59* | 2019 |
GASC: Genre-Aware Semantic Change for Ancient Greek V Perrone, M Palma, S Hengchen, A Vatri, JQ Smith, B McGillivray ACL International Workshop on Computational Approaches to Historical …, 2019 | 56 | 2019 |
Cost-aware Bayesian optimization EH Lee, V Perrone, C Archambeau, M Seeger arXiv preprint arXiv:2003.10870, 2020 | 51 | 2020 |
Constrained Bayesian Optimization with Max-Value Entropy Search V Perrone, I Shcherbatyi, R Jenatton, C Archambeau, M Seeger Advances in Neural Information Processing Systems Workshop on Meta-Learning, 2019 | 49 | 2019 |
Relativistic Monte Carlo X Lu*, V Perrone*, L Hasenclever, YW Teh, SJ Vollmer, (*joint first author) Proceedings of the 20th International Conference on Artificial Intelligence …, 2017 | 48 | 2017 |
Syne tune: A library for large scale hyperparameter tuning and reproducible research D Salinas, M Seeger, A Klein, V Perrone, M Wistuba, C Archambeau International Conference on Automated Machine Learning, 16/1-23, 2022 | 43 | 2022 |
Amazon sagemaker automatic model tuning: Scalable gradient-free optimization V Perrone, H Shen, A Zolic, I Shcherbatyi, A Ahmed, T Bansal, M Donini, ... Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 36* | 2021 |
Automatic termination for hyperparameter optimization A Makarova, H Shen, V Perrone, A Klein, JB Faddoul, A Krause, ... International Conference on Automated Machine Learning, 7/1-21, 2022 | 29 | 2022 |
A nonmyopic approach to cost-constrained Bayesian optimization EH Lee, D Eriksson, V Perrone, M Seeger Uncertainty in Artificial Intelligence, 568-577, 2021 | 29 | 2021 |
Multiple adaptive Bayesian linear regression for scalable Bayesian optimization with warm start V Perrone, R Jenatton, M Seeger, C Archambeau Advances in Neural Information Processing Systems Workshop on Meta-Learning, 2017 | 28 | 2017 |
Multi-objective multi-fidelity hyperparameter optimization with application to fairness R Schmucker, M Donini, V Perrone, C Archambeau | 27 | 2020 |
Overfitting in Bayesian Optimization: an empirical study and early-stopping solution A Makarova, H Shen, V Perrone, A Klein, JB Faddoul, A Krause, ... ICLR Workshop on Neural Architecture Search 2021, 2021 | 18 | 2021 |
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization G Guinet, V Perrone, C Archambeau arXiv preprint arXiv:2011.11456, 2020 | 17 | 2020 |
Flexible and efficient inference with particles for the variational Gaussian approximation T Galy-Fajou, V Perrone, M Opper Entropy 23 (8), 990, 2021 | 15 | 2021 |