Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 1113 | 2021 |
Mind the Gap: Assessing Temporal Generalization in Neural Language Models A Lazaridou, A Kuncoro, E Gribovskaya, D Agrawal, A Liska, T Terzi, ... arXiv preprint arXiv:2102.01951, 2021 | 248* | 2021 |
Streamingqa: A benchmark for adaptation to new knowledge over time in question answering models A Liska, T Kocisky, E Gribovskaya, T Terzi, E Sezener, D Agrawal, ... International Conference on Machine Learning, 13604-13622, 2022 | 65* | 2022 |
Cyprien de Masson d’Autume, Tim Scholtes, Manzil Zaheer, Susannah Young, Ellen Gilsenan-McMahon, Sophia Austin, Phil Blunsom, and Angeliki Lazaridou. 2022 A Liška, T Kociský, E Gribovskaya, T Terzi, E Sezener, D Agrawal Streamingqa: A benchmark for adaptation to new knowledge over time in …, 0 | 12 | |
Scaling instructable agents across many simulated worlds MA Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ... arXiv preprint arXiv:2404.10179, 2024 | 10 | 2024 |
Scaling instructable agents across many simulated worlds M Abi Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ... arXiv e-prints, arXiv: 2404.10179, 2024 | 5 | 2024 |
Detecting semi-plausible response patterns T Terzi London School of Economics and Political Science, 2017 | 5 | 2017 |