Follow
Isao Ishikawa
Title
Cited by
Cited by
Year
Coupling-based invertible neural networks are universal diffeomorphism approximators
T Teshima, I Ishikawa, K Tojo, K Oono, M Ikeda, M Sugiyama
Advances in Neural Information Processing Systems 33, 3362-3373, 2020
1102020
Universal approximation property of neural ordinary differential equations
T Teshima, K Tojo, M Ikeda, I Ishikawa, K Oono
arXiv preprint arXiv:2012.02414, 2020
392020
Metric on nonlinear dynamical systems with Perron-Frobenius operators
I Ishikawa, K Fujii, M Ikeda, Y Hashimoto, Y Kawahara
Advances in Neural Information Processing Systems 31, 2018
292018
Universal approximation property of invertible neural networks
I Ishikawa, T Teshima, K Tojo, K Oono, M Ikeda, M Sugiyama
Journal of Machine Learning Research 24 (287), 1-68, 2023
242023
Krylov subspace method for nonlinear dynamical systems with random noise
Y Hashimoto, I Ishikawa, M Ikeda, Y Matsuo, Y Kawahara
Journal of Machine Learning Research 21 (172), 1-29, 2020
202020
Boundedness of composition operators on reproducing kernel Hilbert spaces with analytic positive definite functions
M Ikeda, I Ishikawa, Y Sawano
Journal of Mathematical Analysis and Applications 511 (1), 126048, 2022
162022
Fully-connected network on noncompact symmetric space and ridgelet transform based on helgason-fourier analysis
S Sonoda, I Ishikawa, M Ikeda
International Conference on Machine Learning, 20405-20422, 2022
142022
Ridge regression with over-parametrized two-layer networks converge to ridgelet spectrum
S Sonoda, I Ishikawa, M Ikeda
International Conference on Artificial Intelligence and Statistics, 2674-2682, 2021
142021
Koopman and Perron–Frobenius operators on reproducing kernel Banach spaces
M Ikeda, I Ishikawa, C Schlosser
Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (12), 2022
132022
Reproducing kernel Hilbert C*-module and kernel mean embeddings
Y Hashimoto, I Ishikawa, M Ikeda, F Komura, T Katsura, Y Kawahara
Journal of Machine Learning Research 22 (267), 1-56, 2021
112021
Gamma factors for the Asai representation of GL2
SY Chen, Y Cheng, I Ishikawa
Journal of Number Theory 209, 83-146, 2020
102020
Universality of group convolutional neural networks based on ridgelet analysis on groups
S Sonoda, I Ishikawa, M Ikeda
Advances in Neural Information Processing Systems 35, 38680-38694, 2022
92022
Bounded composition operators on functional quasi-Banach spaces and stability of dynamical systems
I Ishikawa
Advances in Mathematics 424, 109048, 2023
82023
The global optimum of shallow neural network is attained by ridgelet transform
S Sonoda, I Ishikawa, M Ikeda, K Hagihara, Y Sawano, T Matsubara, ...
arXiv preprint arXiv:1805.07517, 2018
72018
Boundedness of composition operators on Morrey spaces and weak Morrey spaces
N Hatano, M Ikeda, I Ishikawa, Y Sawano
Journal of Inequalities and Applications 2021, 1-15, 2021
62021
Koopman spectrum nonlinear regulator and provably efficient online learning
M Ohnishi, I Ishikawa, K Lowrey, M Ikeda, S Kakade, Y Kawahara
arXiv preprint arXiv:2106.15775, 2021
62021
Ghosts in neural networks: Existence, structure and role of infinite-dimensional null space
S Sonoda, I Ishikawa, M Ikeda
arXiv preprint arXiv:2106.04770, 2021
62021
A Global Universality of Two‐Layer Neural Networks with ReLU Activations
N Hatano, M Ikeda, I Ishikawa, Y Sawano
Journal of Function Spaces 2021 (1), 6637220, 2021
62021
Koopman operators with intrinsic observables in rigged reproducing kernel Hilbert spaces
I Ishikawa, Y Hashimoto, M Ikeda, Y Kawahara
arXiv preprint arXiv:2403.02524, 2024
52024
Ghosts in Neural Networks: Existence
S Sonoda, I Ishikawa, M Ikeda
Structure and Role of Infinite-Dimensional Null Space 2106, 2021
52021
The system can't perform the operation now. Try again later.
Articles 1–20