Ken Nakae
Ken Nakae
Graduate School of Informatics, Kyoto University
Verified email at sys.i.kyoto-u.ac.jp
TitleCited byYear
Distributional smoothing with virtual adversarial training
T Miyato, S Maeda, M Koyama, K Nakae, S Ishii
arXiv preprint arXiv:1507.00677, 2015
2392015
Distributional smoothing by virtual adversarial examples
T Miyato, S Maeda, M Koyama, K Nakae, S Ishii
stat 1050, 2, 2015
442015
Deep learning of fMRI big data: a novel approach to subject-transfer decoding
S Koyamada, Y Shikauchi, K Nakae, M Koyama, S Ishii
arXiv preprint arXiv:1502.00093, 2015
332015
Bayesian estimation of phase response curves
K Nakae, Y Iba, Y Tsubo, T Fukai, T Aoyagi
Neural networks 23 (6), 752-763, 2010
142010
A Statistical Method of Identifying Interactions in Neuron–Glia Systems Based on Functional Multicell Ca2+ Imaging
K Nakae, Y Ikegaya, T Ishikawa, S Oba, H Urakubo, M Koyama, S Ishii
PLoS computational biology 10 (11), 2014
102014
Uncertainty-dependent extinction of fear memory in an amygdala-mPFC neural circuit model
Y Li, K Nakae, S Ishii, H Naoki
PLoS computational biology 12 (9), 2016
92016
Pat—probabilistic axon tracking for densely labeled neurons in large 3-d micrographs
H Skibbe, M Reisert, K Nakae, A Watakabe, J Hata, H Mizukami, H Okano, ...
IEEE transactions on medical imaging 38 (1), 69-78, 2018
52018
Principal sensitivity analysis
S Koyamada, M Koyama, K Nakae, S Ishii
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 621-632, 2015
52015
Empirical Bayesian significance measure of neuronal spike response
S Oba, K Nakae, Y Ikegaya, S Aki, J Yoshimoto, S Ishii
BMC neuroscience 17 (1), 27, 2016
22016
Construction of subject-independent brain decoders for human FMRI with deep learning
S Koyamada, Y Shikauchi, K Nakae, S Ishii
Proc. Int. Conf. Data Mining, Internet Comput., Big Data (BigData), 60-68, 2014
22014
Statistical estimation of phase response curves using data transformation
K Nakae
Journal of the Physical Society of Japan 88 (8), 084003, 2019
12019
MarmoNet: a pipeline for automated projection mapping of the common marmoset brain from whole-brain serial two-photon tomography
H Skibbe, A Watakabe, K Nakae, CE Gutierrez, H Tsukada, J Hata, ...
arXiv preprint arXiv:1908.00876, 2019
12019
Semi-supervised deep learning of brain tissue segmentation
R Ito, K Nakae, J Hata, H Okano, S Ishii
Neural Networks 116, 25-34, 2019
12019
Zero-shot fMRI decoding with three-dimensional registration based on diffusion tensor imaging
T Fuchigami, Y Shikauchi, K Nakae, M Shikauchi, T Ogawa, S Ishii
Scientific reports 8 (1), 1-11, 2018
12018
Multi-objective Parameter Optimization of DWI-based Global Fiber Tracking with Neuronal Tracer Signal as a Reference
CE Gutierrez, H Skibbe, K Nakae, H Tsukada, J Lienard, A Watakabe, ...
arXiv preprint arXiv:1911.13215, 2019
2019
System level analysis of motor-related neural activities in larval Drosophila
Y Yoon, J Park, A Taniguchi, H Kohsaka, K Nakae, S Nonaka, S Ishii, ...
Journal of neurogenetics 33 (3), 179-189, 2019
2019
The NanoZoomer Connectomics Pipeline for Tracer Injection Studies of the Marmoset Brain
A Woodward, R Gong, H Abe, K Nakae, J Hata, H Skibbe, Y Yamaguchi, ...
bioRxiv, 748376, 2019
2019
Analysis of Structure-Function Relationship Using a Whole-Brain Dynamic Model Based on MRI Images of the Common Marmoset
H Tsukada, H Hamada, K Nakae, S Ishii, J Hata, H Okano, K Doya
Advances in Cognitive Neurodynamics (VI), 97-102, 2018
2018
Effect of Local Excitatory-Inhibitory Connection Balance in Reproducing Whole-Brain Functional Connectivity
H Tsukada, H Hamada, K Nakae, S Ishii, J Hata, H Okano, K Doya
Advances in Neuroinformatics V, 52, 2017
2017
Mathematical modeling and dynamical analysis using structural and functional connectivity
H TSUKADA, H HAMADA, K NAKAE, S ISHII, J HATA, H OKANO, K DOYA
Advances in Neuroinformatics IV, 58, 2016
2016
The system can't perform the operation now. Try again later.
Articles 1–20