Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation K Cho, B van Merrienboer, C Gulcehre, F Bougares, H Schwenk, ... arXiv preprint arXiv:1406.1078, 2014 | 31472 | 2014 |
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches K Cho, B van Merriënboer, D Bahdanau, Y Bengio arXiv preprint arXiv:1409.1259, 2014 | 9169 | 2014 |
Towards AI-complete question answering: a set of prerequisite toy tasks J Weston, A Bordes, S Chopra, T Mikolov, B van Merriënboer arXiv preprint arXiv:1502.05698, 2015 | 1285 | 2015 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv preprint arXiv:1605.02688, 2016 | 1095 | 2016 |
Blocks and Fuel: Frameworks for deep learning B van Merriënboer, D Bahdanau, V Dumoulin, D Serdyuk, ... arXiv preprint arXiv:1506.00619, 2015 | 205 | 2015 |
Automatic differentiation in ML: Where we are and where we should be going B van Merriënboer, O Breuleux, A Bergeron, P Lamblin Advances in neural information processing systems, 8757-8767, 2018 | 102 | 2018 |
Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation J Pouget-Abadie, D Bahdanau, B van Merriënboer, K Cho, Y Bengio arXiv preprint arXiv:1409.1257, 2014 | 98 | 2014 |
Gradmax: Growing neural networks using gradient information U Evci, B van Merrienboer, T Unterthiner, M Vladymyrov, F Pedregosa arXiv preprint arXiv:2201.05125, 2022 | 46 | 2022 |
Tangent: Automatic differentiation using source-code transformation for dynamically typed array programming B van Merriënboer, D Moldovan, A Wiltschko Advances in Neural Information Processing Systems, 6256-6265, 2018 | 39 | 2018 |
Halting time is predictable for large models: A universality property and average-case analysis C Paquette, B van Merriënboer, E Paquette, F Pedregosa Foundations of Computational Mathematics 23 (2), 597-673, 2023 | 29 | 2023 |
Information matrices and generalization V Thomas, F Pedregosa, B van Merriënboer, PA Mangazol, Y Bengio, ... arXiv preprint arXiv:1906.07774, 2019 | 16 | 2019 |
Tangent: Automatic Differentiation Using Source Code Transformation in Python B van Merriënboer, AB Wiltschko, D Moldovan arXiv preprint arXiv:1711.02712, 2017 | 14* | 2017 |
In search for a generalizable method for source free domain adaptation M Boudiaf, T Denton, B Van Merriënboer, V Dumoulin, E Triantafillou International Conference on Machine Learning, 2914-2931, 2023 | 12 | 2023 |
Multiscale sequence modeling with a learned dictionary B van Merriënboer, A Sanyal, H Larochelle, Y Bengio arXiv preprint arXiv:1707.00762, 2017 | 12 | 2017 |
Fast Training of Sparse Graph Neural Networks on Dense Hardware M Balog, B van Merriënboer, S Moitra, Y Li, D Tarlow arXiv preprint arXiv:1906.11786, 2019 | 11 | 2019 |
Automatic Differentiation in Myia O Breuleux, B van Merriënboer | 7 | 2017 |
BIRB: A Generalization Benchmark for Information Retrieval in Bioacoustics J Hamer, E Triantafillou, B van Merrienboer, S Kahl, H Klinck, T Denton, ... arXiv preprint arXiv:2312.07439, 2023 | 4 | 2023 |
Birds, bats and beyond: Evaluating generalization in bioacoustics models B van Merriënboer, J Hamer, V Dumoulin, E Triantafillou, T Denton Frontiers in Bird Science 3, 1369756, 2024 | 2 | 2024 |
Optimizing sparse graph neural networks for dense hardware DS Tarlow, M Balog, B Van Merrienboer, Y Li, S Moitra US Patent 11,562,239, 2023 | 1 | 2023 |
Leveraging tropical reef, bird and unrelated sounds for superior transfer learning in marine bioacoustics B Williams, B van Merriënboer, V Dumoulin, J Hamer, E Triantafillou, ... arXiv preprint arXiv:2404.16436, 2024 | | 2024 |