Sample-efficient optimization in the latent space of deep generative models via weighted retraining A Tripp, E Daxberger, JM Hernández-Lobato Advances in Neural Information Processing Systems 33, 11259-11272, 2020 | 152 | 2020 |
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design M García-Ortegón, GNC Simm, AJ Tripp, JM Hernández-Lobato, A Bender, ... Journal of chemical information and modeling 62 (15), 3486-3502, 2022 | 74 | 2022 |
GAUCHE: a library for Gaussian processes in chemistry RR Griffiths, L Klarner, H Moss, A Ravuri, S Truong, Y Du, S Stanton, ... Advances in Neural Information Processing Systems 36, 2024 | 41 | 2024 |
Meta-learning adaptive deep kernel gaussian processes for molecular property prediction W Chen, A Tripp, JM Hernández-Lobato arXiv preprint arXiv:2205.02708, 2022 | 38 | 2022 |
Petroleomic analysis of the treatment of naphthenic organics in oil sands process-affected water with buoyant photocatalysts T Leshuk, KM Peru, D de Oliveira Livera, A Tripp, P Bardo, JV Headley, ... Water Research 141, 297-306, 2018 | 29 | 2018 |
A fresh look at de novo molecular design benchmarks A Tripp, GNC Simm, JM Hernández-Lobato NeurIPS 2021 AI for Science Workshop, 2021 | 19 | 2021 |
Genetic algorithms are strong baselines for molecule generation A Tripp, JM Hernández-Lobato arXiv preprint arXiv:2310.09267, 2023 | 15 | 2023 |
Re-evaluating retrosynthesis algorithms with syntheseus K Maziarz, A Tripp, G Liu, M Stanley, S Xie, P Gaiński, P Seidl, ... Faraday Discussions, 2024 | 13 | 2024 |
Re-evaluating chemical synthesis planning algorithms A Tripp, K Maziarz, S Lewis, G Liu, M Segler NeurIPS 2022 AI for Science: Progress and Promises, 2022 | 11 | 2022 |
Retrosynthetic Planning with Dual Value Networks G Liu, D Xue, S Xie, Y Xia, A Tripp, K Maziarz, M Segler, T Qin, Z Zhang, ... 40th International Conference on Machine Learning 202, 22266-22276, 2023 | 10 | 2023 |
Tanimoto random features for scalable molecular machine learning A Tripp, S Bacallado, S Singh, JM Hernández-Lobato Advances in Neural Information Processing Systems 36, 2024 | 9 | 2024 |
An evaluation framework for the objective functions of de novo drug design benchmarks A Tripp, W Chen, JM Hernández-Lobato ICLR2022 Machine Learning for Drug Discovery, 2022 | 6 | 2022 |
Stochastic Gradient Descent for Gaussian Processes Done Right JA Lin, S Padhy, J Antorán, A Tripp, A Terenin, C Szepesvári, ... arXiv preprint arXiv:2310.20581, 2023 | 5 | 2023 |
Retro-fallback: retrosynthetic planning in an uncertain world A Tripp, K Maziarz, S Lewis, M Segler, JM Hernández-Lobato arXiv preprint arXiv:2310.09270, 2023 | 5 | 2023 |
GAUCHE: A Library for Gaussian Processes in Chemistry. 2022 RR Griffiths, L Klarner, HB Moss, A Ravuri, S Truong, B Rankovic, Y Du, ... arXiv preprint arXiv:2212.04450, 0 | 5 | |
Vibrational Raman shifts of spin isomer combinations of hydrogen dimers and isotopologues A Marr, T Halverson, A Tripp, PN Roy The Journal of Physical Chemistry A 124 (34), 6877-6888, 2020 | 4 | 2020 |
Nonequilibrium sensing of volatile compounds using active and passive analyte delivery S Brandt, I Pavlichenko, AV Shneidman, H Patel, A Tripp, TSB Wong, ... Proceedings of the National Academy of Sciences 120 (31), e2303928120, 2023 | 2 | 2023 |
GAUCHE: A library for Gaussian processes and Bayesian optimisation in chemistry RR Griffiths, L Klarner, A Ravuri, S Truong, B Rankovic, Y Du, A Jamasb, ... ICML 2022 Workshop on Adaptive Experimental Design and Active Learning in …, 2022 | 2 | 2022 |
Volatile liquid analysis I Pavlichenko, E Shirman, S Brandt, TSB Wong, A Tripp, J Aizenberg US Patent App. 17/054,868, 2021 | 1 | 2021 |
Batched Bayesian optimization with correlated candidate uncertainties J Fromer, R Wang, M Manjrekar, A Tripp, JM Hernández-Lobato, ... arXiv preprint arXiv:2410.06333, 2024 | | 2024 |