关注
Wengong Jin
Wengong Jin
Broad Institute of MIT and Harvard
在 csail.mit.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A deep learning approach to antibiotic discovery
JM Stokes, K Yang, K Swanson, W Jin, A Cubillos-Ruiz, NM Donghia, ...
Cell 180 (4), 688-702. e13, 2020
19812020
Junction Tree Variational Autoencoder for Molecular Graph Generation
W Jin, R Barzilay, T Jaakkola
International Conference on Machine Learning (ICML), 2018
16482018
Analyzing learned molecular representations for property prediction
K Yang, K Swanson, W Jin, C Coley, P Eiden, H Gao, A Guzman-Perez, ...
Journal of chemical information and modeling 59 (8), 3370-3388, 2019
14982019
A graph-convolutional neural network model for the prediction of chemical reactivity
CW Coley, W Jin, L Rogers, TF Jamison, TS Jaakkola, WH Green, ...
Chemical science 10 (2), 370-377, 2019
6932019
Hierarchical Generation of Molecular Graphs using Structural Motifs
W Jin, R Barzilay, T Jaakkola
International Conference on Machine Learning (ICML), 2020
356*2020
Predicting organic reaction outcomes with weisfeiler-lehman network
W Jin, C Coley, R Barzilay, T Jaakkola
Advances in neural information processing systems 30, 2017
3412017
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
W Jin, K Yang, R Barzilay, T Jaakkola
International Conference on Learning Representations (ICLR), 2018
2942018
Multi-Objective Molecule Generation using Interpretable Substructures
W Jin, R Barzilay, T Jaakkola
International Conference on Machine Learning (ICML), 2020
241*2020
Generative models for molecular discovery: Recent advances and challenges
C Bilodeau, W Jin, T Jaakkola, R Barzilay, KF Jensen
Wiley Interdisciplinary Reviews: Computational Molecular Science 12 (5), e1608, 2022
2152022
Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii
G Liu, DB Catacutan, K Rathod, K Swanson, W Jin, JC Mohammed, ...
Nature Chemical Biology 19 (11), 1342-1350, 2023
1682023
Deriving neural architectures from sequence and graph kernels
T Lei, W Jin, R Barzilay, T Jaakkola
International Conference on Machine Learning (ICML), 2017
1502017
Deep learning identifies synergistic drug combinations for treating COVID-19
W Jin, JM Stokes, RT Eastman, Z Itkin, AV Zakharov, JJ Collins, ...
Proceedings of the National Academy of Sciences 118 (39), e2105070118, 2021
1372021
Iterative refinement graph neural network for antibody sequence-structure co-design
W Jin, J Wohlwend, R Barzilay, T Jaakkola
International Conference on Learning Representations (ICLR), 2021
1222021
Discovery of a structural class of antibiotics with explainable deep learning
F Wong, EJ Zheng, JA Valeri, NM Donghia, MN Anahtar, S Omori, A Li, ...
Nature 626 (7997), 177-185, 2024
982024
Antibody-Antigen Docking and Design via Hierarchical Equivariant Refinement
W Jin, R Barzilay, T Jaakkola
International Conference on Machine Learning (ICML), 2022
61*2022
Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back
BA Koscher, RB Canty, MA McDonald, KP Greenman, CJ McGill, ...
Science 382 (6677), eadi1407, 2023
492023
Enforcing Predictive Invariance across Structured Biomedical Domains
W Jin, R Barzilay, T Jaakkola
arXiv preprint arXiv:2006.03908, 2020
41*2020
Functional Transparency for Structured Data: a Game-Theoretic Approach
GH Lee, W Jin, D Alvarez-Melis, TS Jaakkola
International Conference on Machine Learning (ICML), 2019
232019
Improving Molecular Design by Stochastic Iterative Target Augmentation
K Yang, W Jin, K Swanson, R Barzilay, T Jaakkola
International Conference on Machine Learning (ICML), 2020
222020
Mol2Image: improved conditional flow models for molecule to image synthesis
K Yang, S Goldman, W Jin, AX Lu, R Barzilay, T Jaakkola, C Uhler
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
17*2021
系统目前无法执行此操作,请稍后再试。
文章 1–20