Phase-reduction approach to synchronization of spatiotemporal rhythms in reaction-diffusion systems H Nakao, T Yanagita, Y Kawamura Physical review X 4 (2), 021032, 2014 | 84 | 2014 |
Coupled map lattice model for convection T Yanagita, K Kaneko Physics Letters A 175 (6), 415-420, 1993 | 79 | 1993 |
Rayleigh-Bénard convection patterns, chaos, spatiotemporal chaos and turbulence T Yanagita, K Kaneko Physica D: Nonlinear Phenomena 82 (3), 288-313, 1995 | 67 | 1995 |
Pair of excitable fitzhugh-nagumo elements: Synchronization, multistability, and chaos T Yanagita, T Ichinomiya, Y Oyama Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 72 (5 …, 2005 | 57 | 2005 |
Three-dimensional cellular automaton model of segregation of granular materials in a rotating cylinder T Yanagita Physical review letters 82 (17), 3488, 1999 | 54 | 1999 |
Chaotic pulses for discrete reaction diffusion systems Y Nishiura, D Ueyama, T Yanagita SIAM Journal on Applied Dynamical Systems 4 (3), 733-754, 2005 | 45 | 2005 |
Phenomenology of boiling: A coupled map lattice model T Yanagita Chaos: An Interdisciplinary Journal of Nonlinear Science 2 (3), 343-350, 1992 | 44 | 1992 |
Modeling and characterization of cloud dynamics T Yanagita, K Kaneko Physical Review Letters 78 (22), 4297, 1997 | 43 | 1997 |
Coupled map lattice model for boiling T Yanagita International Symposium on Imaging in Transport Processes., 1992 | 38 | 1992 |
Is a two-dimensional butterfly able to fly by symmetric flapping? M Iima, T Yanagita Journal of the Physical Society of Japan 70 (1), 5-8, 2001 | 30 | 2001 |
Design of easily synchronizable oscillator networks using the Monte Carlo optimization method T Yanagita, AS Mikhailov Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 81 (5 …, 2010 | 28 | 2010 |
Design of oscillator networks with enhanced synchronization tolerance against noise T Yanagita, AS Mikhailov Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 85 (5 …, 2012 | 26 | 2012 |
Asymmetric motion of a two-dimensional symmetric flapping model M Iima, T Yanagita Fluid dynamics research 36 (4-6), 407, 2005 | 26 | 2005 |
Signal propagation and failure in one-dimensional FitzHugh-Nagumo equations with periodic stimuli T Yanagita, Y Nishiura, R Kobayashi Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 71 (3 …, 2005 | 25 | 2005 |
Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems Y Kawamura, S Shirasaka, T Yanagita, H Nakao Physical Review E 96 (1), 012224, 2017 | 18 | 2017 |
Monopoly, oligopoly and the invisible hand T Onozaki, T Yanagita Chaos, Solitons & Fractals 18 (3), 537-547, 2003 | 15 | 2003 |
An analysis of a symmetric flapping model: a symmetry-breaking mechanism and its universality M Iima, T Yanagita Theoretical and Applied Mechanics 50, 237-245, 2001 | 15 | 2001 |
Phase description of stable limit-cycle solutions in reaction-diffusion systems H Nakao, T Yanagita, Y Kawamura Procedia IUTAM 5, 227-233, 2012 | 14 | 2012 |
Exploration of order in chaos using the replica exchange Monte Carlo method T Yanagita, Y Iba Journal of Statistical Mechanics: Theory and Experiment 2009 (02), P02043, 2009 | 14 | 2009 |
A transition from ascending flight to vertical hovering: A study of a symmetric flapping model M Iima, T Yanagita Europhysics Letters 74 (1), 55, 2006 | 13 | 2006 |