フォロー
Dirk van der Hoeven
Dirk van der Hoeven
Leiden University
確認したメール アドレス: dirkvanderhoeven.com - ホームページ
タイトル
引用先
引用先
The many faces of exponential weights in online learning
D van der Hoeven, T van Erven, W Kotłowski
arXiv preprint arXiv:1802.07543, 2018
40*2018
User-specified local differential privacy in unconstrained adaptive online learning
D van der Hoeven
Advances in Neural Information Processing Systems 32, 14103-14112, 2019
332019
Metagrad: Adaptation using multiple learning rates in online learning
T Van Erven, WM Koolen, D Van der Hoeven
Journal of Machine Learning Research 22 (161), 1-61, 2021
212021
Open Problem: Fast and Optimal Online Portfolio Selection
T Van Erven, D Van der Hoeven, W Kotłowski, WM Koolen
Conference on Learning Theory, 3864-3869, 2020
192020
A near-optimal best-of-both-worlds algorithm for online learning with feedback graphs
C Rouyer, D van der Hoeven, N Cesa-Bianchi, Y Seldin
Advances in Neural Information Processing Systems 35, 35035-35048, 2022
162022
Learning on the edge: Online learning with stochastic feedback graphs
E Esposito, F Fusco, D van der Hoeven, N Cesa-Bianchi
Advances in Neural Information Processing Systems 35, 34776-34788, 2022
122022
Nonstochastic Bandits and Experts with Arm-Dependent Delays
D van der Hoeven, N Cesa-Bianchi
arXiv preprint arXiv:2111.01589, 2021
122021
Beyond Bandit Feedback in Online Multiclass Classification
D van der Hoeven, F Fusco, N Cesa-Bianchi
Advances in Neural Information Processing Systems 34, 13280-13291, 2021
102021
Exploiting the Surrogate Gap in Online Multiclass Classification
D van der Hoeven
Advances in Neural Information Processing Systems 33, 2020
102020
A regret-variance trade-off in online learning
D Van der Hoeven, N Zhivotovskiy, N Cesa-Bianchi
Advances in Neural Information Processing Systems 35, 35188-35200, 2022
52022
Comparator-Adaptive Convex Bandits
D van der Hoeven, A Cutkosky, H Luo
Advances in Neural Information Processing Systems 33, 2020
52020
Distributed online learning for joint regret with communication constraints
D Van der Hoeven, H Hadiji, T van Erven
International Conference on Algorithmic Learning Theory, 1003-1042, 2022
42022
Nonstochastic Contextual Combinatorial Bandits
L Zierahn, D van der Hoeven, N Cesa-Bianchi, G Neu
International Conference on Artificial Intelligence and Statistics, 8771-8813, 2023
22023
Is mirror descent a special case of exponential weights
D van der Hoeven, T van Erven
MSC Thesis. Available from: http://pub. math. leidenuniv. nl/~ hoevendvander, 2016
22016
High-Probability Risk Bounds via Sequential Predictors
D van der Hoeven, N Zhivotovskiy, N Cesa-Bianchi
arXiv preprint arXiv:2308.07588, 2023
12023
A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs
D van der Hoeven, L Zierahn, T Lancewicki, A Rosenberg, ...
The Thirty Sixth Annual Conference on Learning Theory, 1285-1321, 2023
12023
Trading-off payments and accuracy in online classification with paid stochastic experts
D Van Der Hoeven, C Pike-Burke, H Qiu, N Cesa-Bianchi
International Conference on Machine Learning, 34809-34830, 2023
2023
Delayed Bandits: When Do Intermediate Observations Help?
E Esposito, S Masoudian, H Qiu, D van der Hoeven, N Cesa-Bianchi, ...
arXiv preprint arXiv:2305.19036, 2023
2023
The many faces of online learning
D Hoeven
Leiden University, 2021
2021
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–19