Dynamic Bayesian predictive synthesis in time series forecasting K McAlinn, M West Journal of Econometrics 210 (1), 155-169, 2019 | 75 | 2019 |
Multivariate Bayesian predictive synthesis in macroeconomic forecasting K McAlinn, KA Aastveit, J Nakajima, M West Journal of the American Statistical Association 115 (531), 1092-1110, 2020 | 42 | 2020 |
Dynamic variable selection with spike-and-slab process priors V Rockova, K McAlinn Bayesian Analysis 16 (1), 233-269, 2021 | 33 | 2021 |
Divide and conquer: Financial ratios and industry returns predictability D Bianchi, K McAlinn Available at SSRN 3136368, 2020 | 10* | 2020 |
Bayesian predictive synthesis–discussion of: Using stacking to average Bayesian predictive distributions, by Y. Yao et al K McAlinn, KA Aastveit, M West Bayesian Analysis 13, 971-973, 2018 | 6 | 2018 |
Fully parallel particle learning for GPGPUs and other parallel devices K McAlinn, T Nakatsuma arXiv preprint arXiv:1212.1639, 2012 | 5 | 2012 |
Dynamic sparse factor analysis K McAlinn, V Rockova, E Saha arXiv preprint arXiv:1812.04187, 2018 | 4 | 2018 |
Mixed‐frequency Bayesian predictive synthesis for economic nowcasting K McAlinn Journal of the Royal Statistical Society: Series C (Applied Statistics), 2021 | 3 | 2021 |
Policy choice and best arm identification: Asymptotic analysis of exploration sampling K Ariu, M Kato, J Komiyama, K McAlinn, C Qin arXiv preprint arXiv:2109.08229, 2021 | 3 | 2021 |
Volatility forecasts using stochastic volatility models with nonlinear leverage effects K McAlinn, A Ushio, T Nakatsuma Journal of Forecasting 39 (2), 143-154, 2020 | 3 | 2020 |
The Adaptive Doubly Robust Estimator and a Paradox Concerning Logging Policy M Kato, K McAlinn, S Yasui Advances in Neural Information Processing Systems 34, 1351-1364, 2021 | 2 | 2021 |
Predictive properties and minimaxity of bayesian predictive synthesis K Takanashi, K McAlinn Preprint, RIKEN and Temple University, 2020 | 2 | 2020 |
Learning Causal Models from Conditional Moment Restrictions by Importance Weighting M Kato, M Imaizumi, K McAlinn, S Yasui, H Kakehi International Conference on Learning Representations, 2021 | 1 | 2021 |
Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting KA Aastveit, K McAlinn, J Nakajima, M West Norges Bank, 2019 | 1 | 2019 |
Dynamic Mixed Frequency Synthesis for Economic Nowcasting K McAlinn arXiv preprint arXiv:1712.03646, 2017 | 1 | 2017 |
Spatially-Varying Bayesian Predictive Synthesis for Flexible and Interpretable Spatial Prediction D Cabel, M Kato, K McAlinn, S Sugasawa, K Takanashi arXiv preprint arXiv:2203.05197, 2022 | | 2022 |
Policy Choice and Best Arm Identification: Asymptotic Analysis of Exploration Sampling under Posterior Weighted Policy Regret K Ariu, M Kato, J Komiyama, K McAlinn, C Qin arXiv preprint arXiv:2109.08229, 2021 | | 2021 |
Policy Choice and Best Arm Identification: Comments on" Adaptive Treatment Assignment in Experiments for Policy Choice" K Ariu, M Kato, J Komiyama, K McAlinn arXiv preprint arXiv:2109.08229, 2021 | | 2021 |
Learning Causal Relationships from Conditional Moment Conditions by Importance Weighting M Kato, H Kakehi, K McAlinn, S Yasui arXiv preprint arXiv:2108.01312, 2021 | | 2021 |
Predictions with dynamic Bayesian predictive synthesis are exact minimax K McAlinn arXiv. org Papers, 2021 | | 2021 |