Link propagation: A fast semi-supervised learning algorithm for link prediction H Kashima, T Kato, Y Yamanishi, M Sugiyama, K Tsuda Proceedings of the 2009 SIAM international conference on data mining, 1100-1111, 2009 | 189 | 2009 |
Multi-task learning via conic programming T Kato, H Kashima, M Sugiyama, K Asai Advances in Neural Information Processing Systems 20, 2007 | 123 | 2007 |
Selective integration of multiple biological data for supervised network inference T Kato, K Tsuda, K Asai Bioinformatics 21 (10), 2488-2495, 2005 | 108 | 2005 |
Asymmetric gaussian and its application to pattern recognition T Kato, S Omachi, H Aso Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR …, 2002 | 91 | 2002 |
Robust label propagation on multiple networks T Kato, H Kashima, M Sugiyama IEEE Transactions on Neural Networks 20 (1), 35-44, 2008 | 69 | 2008 |
Author copy only T Kakimoto, K Okada, Y Hirohashi, R Relator, M Kawai, T Iguchi, ... J Endocrinol 222, 43-51, 2014 | 51 | 2014 |
Metric learning for enzyme active-site search T Kato, N Nagano Bioinformatics 26 (21), 2698-2704, 2010 | 36 | 2010 |
Conic programming for multitask learning T Kato, H Kashima, M Sugiyama, K Asai IEEE Transactions on Knowledge and Data Engineering 22 (7), 957-968, 2009 | 33 | 2009 |
Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach H Kashima, Y Yamanishi, T Kato, M Sugiyama, K Tsuda Bioinformatics 25 (22), 2962-2968, 2009 | 27 | 2009 |
Classification of heterogeneous microarray data by maximum entropy kernel W Fujibuchi, T Kato BMC bioinformatics 8, 1-10, 2007 | 27 | 2007 |
Protein classification via kernel matrix completion T Kin, T Kato, K Tsuda, K Asai Genome Informatics 14, 516-517, 2003 | 22 | 2003 |
Integration of multiple networks for robust label propagation T Kato, H Kashima, M Sugiyama Proceedings of the 2008 SIAM International Conference on Data Mining, 716-726, 2008 | 17 | 2008 |
Application of fluorescence spectroscopy using a novel fluoroionophore for quantification of zinc in urban runoff A Hafuka, H Yoshikawa, K Yamada, T Kato, M Takahashi, S Okabe, ... Water Research 54, 12-20, 2014 | 13 | 2014 |
A transfer learning approach and selective integration of multiple types of assays for biological network inference T Kato, K Okada, H Kashima, M Sugiyama International Journal of Knowledge Discovery in Bioinformatics (IJKDB) 1 (1 …, 2010 | 11 | 2010 |
Discriminative structural approaches for enzyme active-site prediction T Kato, N Nagano BMC bioinformatics 12, 1-8, 2011 | 8 | 2011 |
Network-based de-noising improves prediction from microarray data T Kato, Y Murata, K Miura, K Asai, PB Horton, K Tsuda, W Fujibuchi BMC bioinformatics 7, 1-11, 2006 | 6 | 2006 |
Precise hand-printed character recognition using elastic models via nonlinear transformation T Kato, S Omchi, H Aso Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 …, 2000 | 6 | 2000 |
A new variational framework for rigid-body alignment T Kato, K Tsuda, K Tomii, K Asai Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR …, 2004 | 5 | 2004 |
An accurate prediction method for protein structural class from signal patterns of NMR spectra in the absence of chemical shift assignments H Arai, N Tochio, T Kato, T Kigawa, M Yamamura 2010 IEEE International Conference on BioInformatics and BioEngineering, 32-37, 2010 | 3 | 2010 |