Some theoretical and numerical results for delayed neural field equations G Faye, O Faugeras Physica D: Nonlinear Phenomena 239 (9), 561-578, 2010 | 119 | 2010 |
Continuation of localized coherent structures in nonlocal neural field equations J Rankin, D Avitabile, J Baladron, G Faye, DJB Lloyd SIAM Journal on Scientific Computing 36 (1), B70-B93, 2014 | 79 | 2014 |
Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach G Faye, M Holzer Journal of Differential Equations 258 (7), 2257-2289, 2015 | 58 | 2015 |
Existence of pulses in excitable media with nonlocal coupling G Faye, A Scheel Advances in Mathematics 270, 400-456, 2015 | 51 | 2015 |
Existence and stability of traveling pulses in a neural field equation with synaptic depression G Faye SIAM Journal on Applied Dynamical Systems 12 (4), 2032-2067, 2013 | 36 | 2013 |
Center manifolds without a phase space G Faye, A Scheel Transactions of the American Mathematical Society 370 (8), 5843-5885, 2018 | 32 | 2018 |
Fredholm properties of nonlocal differential operators via spectral flow G Faye, A Scheel Indiana Univ. Math. J. 63, pp. 1311-1348, 2013 | 32 | 2013 |
Asymptotic stability of the critical Fisher–KPP front using pointwise estimates G Faye, M Holzer Zeitschrift für angewandte Mathematik und Physik 70, 1-21, 2019 | 31 | 2019 |
Monotone traveling waves for delayed neural field equations J Fang, G Faye Mathematical Models and Methods in Applied Sciences 26 (10), 1919-1954, 2016 | 27 | 2016 |
Bifurcation of hyperbolic planforms P Chossat, G Faye, O Faugeras Journal of Nonlinear Science 21 (4), 465-498, 2011 | 27 | 2011 |
Rigorous derivation of the nonlocal reaction-diffusion Fitzhugh--Nagumo system J Crevat, G Faye, F Filbet SIAM Journal on Mathematical Analysis 51 (1), 346-373, 2019 | 26 | 2019 |
Pinning and unpinning in nonlocal systems T Anderson, G Faye, A Scheel, D Stauffer Journal of Dynamics and Differential Equations 28, 897-923, 2016 | 25 | 2016 |
Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis G Faye, J Rankin, P Chossat Journal of Mathematical Biology, 36, 2012 | 24 | 2012 |
Analysis of a hyperbolic geometric model for visual texture perception G Faye, P Chossat, O Faugeras The Journal of Mathematical Neuroscience 1, 1-51, 2011 | 24 | 2011 |
Generalized Gaussian bounds for discrete convolution powers JF Coulombel, G Faye Revista Matemática Iberoamericana 38 (5), 1553-1604, 2022 | 19 | 2022 |
Linear spreading speeds from nonlinear resonant interaction G Faye, M Holzer, A Scheel Nonlinearity 30 (6), 2403, 2017 | 18 | 2017 |
Pulse bifurcations in stochastic neural fields ZP Kilpatrick, G Faye SIAM Journal on Applied Dynamical Systems 13 (2), 830-860, 2014 | 17 | 2014 |
Traveling fronts for lattice neural field equations G Faye Physica D: Nonlinear Phenomena 378, 20-32, 2018 | 16 | 2018 |
Threshold of front propagation in neural fields: An interface dynamics approach G Faye, ZP Kilpatrick SIAM Journal on Applied Mathematics 78 (5), 2575-2596, 2018 | 16 | 2018 |
Localized radial bumps of a neural field equation on the Euclidean plane and the Poincaré disc G Faye, J Rankin, DJB Lloyd Nonlinearity 26 (2), 437, 2013 | 16 | 2013 |