フォロー
Junpei Komiyama
Junpei Komiyama
New York University
確認したメール アドレス: komiyama.info - ホームページ
タイトル
引用先
引用先
Optimal regret analysis of thompson sampling in stochastic multi-armed bandit problem with multiple plays
J Komiyama, J Honda, H Nakagawa
International Conference on Machine Learning, 1152-1161, 2015
1782015
Nonconvex optimization for regression with fairness constraints
J Komiyama, A Takeda, J Honda, H Shimao
International conference on machine learning, 2737-2746, 2018
1132018
Regret lower bound and optimal algorithm in dueling bandit problem
J Komiyama, J Honda, H Kashima, H Nakagawa
Conference on learning theory, 1141-1154, 2015
812015
Copeland dueling bandit problem: Regret lower bound, optimal algorithm, and computationally efficient algorithm
J Komiyama, J Honda, H Nakagawa
International Conference on Machine Learning, 1235-1244, 2016
382016
Scaling multi-armed bandit algorithms
E Fouché, J Komiyama, K Böhm
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
302019
Regret lower bound and optimal algorithm in finite stochastic partial monitoring
J Komiyama, J Honda, H Nakagawa
Advances in Neural Information Processing Systems 28, 2015
292015
Statistical emerging pattern mining with multiple testing correction
J Komiyama, M Ishihata, H Arimura, T Nishibayashi, S Minato
Proceedings of the 23rd ACM SIGKDD international conference on knowledge …, 2017
282017
Position-based multiple-play bandit problem with unknown position bias
J Komiyama, J Honda, A Takeda
Advances in Neural Information Processing Systems 30, 2017
282017
Two-stage algorithm for fairness-aware machine learning
J Komiyama, H Shimao
arXiv preprint arXiv:1710.04924, 2017
212017
Ric-nn: a robust transferable deep learning framework for cross-sectional investment strategy
K Nakagawa, M Abe, J Komiyama
2020 IEEE 7th International Conference on Data Science and Advanced …, 2020
182020
Multi-armed bandit problem with lock-up periods
J Komiyama, I Sato, H Nakagawa
Asian Conference on Machine Learning, 100-115, 2013
172013
Time-decaying bandits for non-stationary systems
J Komiyama, T Qin
Web and Internet Economics: 10th International Conference, WINE 2014 …, 2014
152014
Minimax Optimal Algorithms for Fixed-Budged Best Arm Identification
J Komiyama, T Tsuchiya, J Honda
arXiv preprint arXiv:2206.04646, 2022
112022
Kl-ucb-based policy for budgeted multi-armed bandits with stochastic action costs
R Watanabe, J Komiyama, A Nakamura, M Kudo
IEICE Transactions on Fundamentals of Electronics, Communications and …, 2017
112017
Optimal simple regret in Bayesian best arm identification
J Komiyama, K Ariu, M Kato, C Qin
arXiv preprint arXiv:2111.09885, 2021
82021
Policy choice and best arm identification: Asymptotic analysis of exploration sampling
K Ariu, M Kato, J Komiyama, K McAlinn, C Qin
arXiv preprint arXiv:2109.08229, 2021
82021
Anytime capacity expansion in medical residency match by monte carlo tree search
K Abe, J Komiyama, A Iwasaki
arXiv preprint arXiv:2202.06570, 2022
62022
On statistical discrimination as a failure of social learning: A multi-armed bandit approach
J Komiyama, S Noda
arXiv preprint arXiv:2010.01079, 2020
42020
A simple way to deal with cherry-picking
J Komiyama, T Maehara
arXiv preprint arXiv:1810.04996, 2018
42018
Comparing fairness criteria based on social outcome
J Komiyama, H Shimao
arXiv preprint arXiv:1806.05112, 2018
42018
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20