Follow
Guy Y. Cornejo Maceda
Guy Y. Cornejo Maceda
Postdoctoral fellow, UC3M
Verified email at ing.uc3m.es - Homepage
Title
Cited by
Cited by
Year
Stabilization of the fluidic pinball with gradient-enriched machine learning control
GYC Maceda, Y Li, F Lusseyran, M Morzyński, BR Noack
Journal of Fluid Mechanics 917, A42, 2021
612021
Machine-learning flow control with few sensor feedback and measurement noise
R Castellanos, GY Cornejo Maceda, I de la Fuente, BR Noack, A Ianiro, ...
Physics of Fluids 34 (4), 047118, 2022
332022
Bayesian optimization for active flow control
AB Blanchard, GY Cornejo Maceda, D Fan, Y Li, Y Zhou, BR Noack, ...
Acta Mechanica Sinica 37 (12), 1786-1798, 2021
282021
Stabilization of a multi-frequency open cavity flow with gradient-enriched machine learning control
GYC Maceda, E Varon, F Lusseyran, BR Noack
Journal of Fluid Mechanics 955, A20, 2023
192023
Sensitivity-aided active control of flow past twin cylinders
L Zhou, H Li, KT Tim, X He, GYC Maceda, H Zhang
International Journal of Mechanical Sciences 242, 108013, 2023
162023
Cluster-based control for net drag reduction of the fluidic pinball
X Wang, N Deng, GY Cornejo Maceda, BR Noack
Physics of Fluids 35 (2), 2023
142023
Topologically assisted optimization for rotor design
T Wang, Y Yang, X Chen, P Li, A Iollo, GY Cornejo Maceda, BR Noack
Physics of Fluids 35 (5), 2023
102023
Artificial intelligence control applied to drag reduction of the fluidic pinball
GY Cornejo Maceda, BR Noack, F Lusseyran, N Deng, L Pastur, ...
PAMM 19 (1), e201900268, 2019
102019
Aerodynamic optimization of a generic light truck under unsteady conditions using gradient-enriched machine learning control
R Semaan, P Oswald, GY Cornejo Maceda, BR Noack
Experiments in Fluids 64 (3), 59, 2023
82023
xMLC--A Toolkit for Machine Learning Control
GYC Maceda, F Lusseyran, BR Noack
arXiv preprint arXiv:2208.13172, 2022
62022
Real-time feedback stall control of an airfoil at large Reynolds numbers using linear genetic programming
PY Passaggia, A Quansah, N Mazellier, GYC Maceda, A Kourta
Physics of Fluids 34 (4), 045108, 2022
62022
Gradient-enriched machine learning control exemplified for shear flows in simulations and experiments
GY Cornejo Maceda
Université Paris-Saclay, 2021
62021
XPDT: A Toolkit for Persistent Data Topology
T Wang, GYC Maceda, BR Noack
Technische Universität Braunschweig, 2023
42023
xMLC--A Toolkit for Machine Learning Control
GY Cornejo Maceda, F Lusseyran, BR Noack
arXiv e-prints, arXiv: 2208.13172, 2022
42022
Towards human-interpretable, automated learning of feedback control for the mixing layer
H Li, GYC Maceda, Y Li, J Tan, M Morzyński, BR Noack
arXiv preprint arXiv:2008.12924, 2020
42020
Jet mixing enhancement with Bayesian optimization, deep learning, and persistent data topology
BR Noack, Y Li, T Wang, GYC Maceda, E Pickering, A Tyliszczak
arXiv preprint arXiv:2311.02330, 2023
3*2023
Taming the fluidic pinball with artificial intelligence control
GYC Maceda, BR Noack, F Lusseyran, M Morzynski, L Pastur, N Deng
European Fluid Mechanics Conference, 2018
32018
Evolutionary Machine Learning in Control
GY Cornejo Maceda, BR Noack
Handbook of Evolutionary Machine Learning, 629-656, 2023
22023
Gradient-enriched machine learning control exemplified for shear flows in simulations and experiments
GYC Maceda
Université Paris-Saclay, 2021
22021
Actuation manifold from snapshot data
L Marra, GYC Maceda, A Meilán-Vila, V Guerrero, S Rashwan, BR Noack, ...
arXiv preprint arXiv:2403.03653, 2024
12024
The system can't perform the operation now. Try again later.
Articles 1–20