The tensor structure on the representation category of the triplet algebra A Tsuchiya, S Wood arXiv preprint arXiv:1201.0419, 2012 | 100 | 2012 |
Coset constructions of logarithmic (1, p) models T Creutzig, D Ridout, S Wood Letters in Mathematical Physics 104 (5), 553-583, 2014 | 91 | 2014 |
Fusion rules and boundary conditions in the c= 0 triplet model MR Gaberdiel, I Runkel, S Wood Journal of Physics A: Mathematical and Theoretical 42 (32), 325403, 2009 | 76 | 2009 |
Bosonic Ghosts at c = 2 as a Logarithmic CFT D Ridout, S Wood Letters in Mathematical Physics 105, 279-307, 2015 | 54 | 2015 |
Relaxed singular vectors, Jack symmetric functions and fractional level ̂sl (2) models D Ridout, S Wood Nuclear Physics B 894, 621-664, 2015 | 52 | 2015 |
On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions T Creutzig, A Milas, S Wood International Mathematics Research Notices 2017 (5), 1390-1432, 2017 | 50 | 2017 |
The Verlinde formula in logarithmic CFT D Ridout, S Wood Journal of Physics: Conference Series 597 (1), 012065, 2015 | 48 | 2015 |
A modular invariant bulk theory for the triplet model MR Gaberdiel, I Runkel, S Wood Journal of Physics A: Mathematical and Theoretical 44 (1), 015204, 2010 | 46 | 2010 |
On the Extended W-Algebra of Type 𝔰𝔩2 at Positive Rational Level A Tsuchiya, S Wood International Mathematics Research Notices 2015 (14), 5357-5435, 2015 | 44 | 2015 |
Bosonic ghostbusting: the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion R Allen, S Wood Communications in Mathematical Physics 390 (2), 959-1015, 2022 | 37 | 2022 |
Modular transformations and Verlinde formulae for logarithmic (p+, p−)-models D Ridout, S Wood Nuclear Physics B 880, 175-202, 2014 | 35 | 2014 |
Fusion rules of the triplet models S Wood Journal of Physics A: Mathematical and Theoretical 43 (4), 045212, 2010 | 33 | 2010 |
Duality structures for module categories of vertex operator algebras and the Feigin Fuchs boson R Allen, S Lentner, C Schweigert, S Wood arXiv preprint arXiv:2107.05718, 2021 | 29 | 2021 |
Unitary and non-unitary N= 2 minimal models T Creutzig, T Liu, D Ridout, S Wood Journal of High Energy Physics 2019 (6), 1-45, 2019 | 25 | 2019 |
An admissible level $\widehat {\mathfrak {osp}}\left (1\middle\vert 2\right) $-model: modular transformations and the Verlinde formula D Ridout, J Snadden, S Wood arXiv preprint arXiv:1705.04006, 2017 | 24 | 2017 |
Yang-Baxter representations of the infinite symmetric group G Lechner, U Pennig, S Wood Advances in Mathematics 355, 106769, 2019 | 22 | 2019 |
Logarithmic bulk and boundary conformal field theory and the full centre construction I Runkel, MR Gaberdiel, S Wood Conformal Field Theories and Tensor Categories: Proceedings of a Workshop c, 2014 | 22 | 2014 |
Admissible-level minimal models K Kawasetsu, D Ridout, S Wood Letters in Mathematical Physics 112 (5), 96, 2022 | 16* | 2022 |
ADMISSIBLE LEVEL osp 1 2 MINIMAL MODELS AND THEIR RELAXED HIGHEST WEIGHT MODULES S Wood Transformation Groups 25 (3), 887-943, 2020 | 15 | 2020 |
Superconformal minimal models and admissible Jack polynomials O Blondeau-Fournier, P Mathieu, D Ridout, S Wood Advances in Mathematics 314, 71-123, 2017 | 15 | 2017 |