Follow
Vikash K. Mansinghka
Vikash K. Mansinghka
MIT, Probabilistic Computing Project
Verified email at mit.edu - Homepage
Title
Cited by
Cited by
Year
Church: a language for generative models
N Goodman, V Mansinghka, DM Roy, K Bonawitz, JB Tenenbaum
arXiv preprint arXiv:1206.3255, 2012
9812012
A new approach to probabilistic programming inference
F Wood, JW Meent, V Mansinghka
Artificial intelligence and statistics, 1024-1032, 2014
4002014
A short introduction to probabilistic soft logic
A Kimmig, S Bach, M Broecheler, B Huang, L Getoor
Proceedings of the NIPS workshop on probabilistic programming: foundations …, 2012
3172012
Picture: A probabilistic programming language for scene perception
TD Kulkarni, P Kohli, JB Tenenbaum, V Mansinghka
Proceedings of the ieee conference on computer vision and pattern …, 2015
2462015
Venture: a higher-order probabilistic programming platform with programmable inference
V Mansinghka, D Selsam, Y Perov
arXiv preprint arXiv:1404.0099, 2014
2302014
Reconciling intuitive physics and Newtonian mechanics for colliding objects.
AN Sanborn, VK Mansinghka, TL Griffiths
Psychological review 120 (2), 411, 2013
2292013
Gen: A general-purpose probabilistic programming system with programmable inference
MF Cusumano-Towner, FA Saad, A Lew, VK and Mansinghka
Technical Report MIT-CSAIL-TR-2018-020, Computer Science and Artificial …, 2019
2062019
Approximate bayesian image interpretation using generative probabilistic graphics programs
VK Mansinghka, TD Kulkarni, YN Perov, J Tenenbaum
Advances in neural information processing systems 26, 2013
1352013
Intuitive theories of mind: A rational approach to false belief
ND Goodman, CL Baker, EB Bonawitz, VK Mansinghka, A Gopnik, ...
Proceedings of the twenty-eighth annual conference of the cognitive science …, 2006
1292006
Structured priors for structure learning
V Mansinghka, C Kemp, T Griffiths, J Tenenbaum
arXiv preprint arXiv:1206.6852, 2012
1022012
Online bayesian goal inference for boundedly rational planning agents
T Zhi-Xuan, J Mann, T Silver, J Tenenbaum, V Mansinghka
Advances in neural information processing systems 33, 19238-19250, 2020
932020
Learning annotated hierarchies from relational data
DM Roy, C Kemp, V Mansinghka, J Tenenbaum
Advances in neural information processing systems 19, 2006
772006
Natively probabilistic computation
VK Mansinghka
Massachusetts Institute of Technology, Department of Brain and Cognitive …, 2009
762009
Bayesian synthesis of probabilistic programs for automatic data modeling
FA Saad, MF Cusumano-Towner, U Schaechtle, MC Rinard, ...
Proceedings of the ACM on Programming Languages 3 (POPL), 1-32, 2019
662019
A probabilistic model of cross-categorization
P Shafto, C Kemp, V Mansinghka, JB Tenenbaum
Cognition 120 (1), 1-25, 2011
642011
From word models to world models: Translating from natural language to the probabilistic language of thought
L Wong, G Grand, AK Lew, ND Goodman, VK Mansinghka, J Andreas, ...
arXiv preprint arXiv:2306.12672, 2023
512023
Probabilistic programming with programmable inference
VK Mansinghka, U Schaechtle, S Handa, A Radul, Y Chen, M and Rinard
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language …, 2018
492018
Variational particle approximations
A Saeedi, TD Kulkarni, VK Mansinghka, SJ Gershman
Journal of Machine Learning Research 18 (69), 1-29, 2017
452017
3DP3: 3D scene perception via probabilistic programming
N Gothoskar, M Cusumano-Towner, B Zinberg, M Ghavamizadeh, ...
Advances in Neural Information Processing Systems 34, 9600-9612, 2021
442021
From machine learning to robotics: Challenges and opportunities for embodied intelligence
N Roy, I Posner, T Barfoot, P Beaudoin, Y Bengio, J Bohg, O Brock, ...
arXiv preprint arXiv:2110.15245, 2021
432021
The system can't perform the operation now. Try again later.
Articles 1–20